
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, Vol. 10, No. 12, December 2008, p. 3292 - 3299 
 

Higher order statistics in signal processing 
and nanometric size analysis 
 
 
N. CRETU*, I. M. POP 
Physics Department, Transilvania University, Brasov, Romania 
 
 
 
A method for the characterisation of the distribution of nanoparticles is proposed, by using the skewness and kurtosis of 
experimental values. The method is analysed on several examples and the different properties it presents are extracted. 
Further, the method is applied on nanoparticle data in order to better characterise its distribution and to eliminate noise. 
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1. Introduction 
  
Certain computer applications in simulation, analysis 

and processing of experimental data allow the use of 
algorithms able to involve real time observation and 
analysis. For this reason in particular, the introduction of 
statistical analysis of signals in physical measurements is 
considered opportune. Also, better computing capacity 
allows the real time use of higher order statistics based on 
the estimation of the higher moments in data acquisition , 
for example in the detection of stationary or transient 
phenomena . The most used statistical features are kurtosis 
and skewness. 

The kurtosis is the ratio between the fourth central 
moment of a distribution and the fourth power of the 
distribution’s standard deviation. Skewness is given by the 
ratio of the third moment about the mean and the third 
power of the standard deviation. If we analyze a time 
signal x(t) with a Gaussian distribution of the amplitude, 
the value of kurtosis is 3. Because many signals we meet 
in practice tend to have such a distribution of the 
amplitude, excess kurtosis is used as well, computed by 
subtracting the constant 3 from the value of kurtosis, so we 
obtain an estimate of kurtosis, equal to zero in the case of 
Gaussian distributions of experimental data and non-zero 
for other distributions. This ensures a criterion to 
recognize and separate Gaussian and non-Gaussian 
signals. 

Kurtosis can be applied in the time domain or in the 
frequency domain. If the kurtosis is estimated with the 
amplitude of the Power Spectral Domain (PSD) 
components, it is named spectral kurtosis. Time domain 
kurtosis is mostly used in industrial diagnosis of some 
phenomena which can produce damage to a system. In [1] 
a fatigue analysis under Gaussian and non-Gaussian 
loading is obtained by using kurtosis analysis.  Kurtosis 
was also used for blind deconvolution separation of 

multiple sources mixed by mechanical systems [2].  In [3], 
a mixed method is examined through kurtosis analysis and 
non-Gaussian projections, to explore the clustering 
structure of the experimental data. Using supplementary 
computer simulations and kurtosis estimation in [4], the 
crack detection of thin isotropic rectangular plates and the 
effect of the added noise are examined. 

More applications are reported in the spectral kurtosis 
domain. The first important application reported in  the 
field is the paper of Dwyer, which computed spectral 
kurtosis to separate underwater acoustic signals [5]. In [6] 
spectral kurtosis was used to detect transient signals from 
mechanical systems. 

A very important topic consists in the application of 
the spectral kurtosis to the study of nonlinear effects. It is 
reported that the nonlinear effects are correlated with 
strong non-Gaussian behavior of external action and 
structural response [7]. A very comprehensive analysis and 
a kurtosis estimator is proposed by Vrabie and 
collaborators [8], by applying spectral kurtosis for bearing 
fault detection in induction motors. For the high frequency 
domain, spectral kurtosis analysis is reported in exploring 
the RF noise in microwave low-noise devices [9].  

In signal processing spectral kurtosis is a 
complementary method close to PSD signal analysis. 
Using  dynamic PSD spectrum, Nita and collaborators [10]  
proposed a  method for the radio frequency  interferences 
(RFI) excision, by using an algorithm based on the spectral 
kurtosis, which was applied to the microwave spectrum of 
solar radiation. In fact, it is possible by using  the dynamic 
PSD, to detect and analyze the short transient signals 
which appear in the system’s evolution, by continuous 
data acquisition, sequential PSD evaluation and a kurtosis 
analysis of each point of the Fourier transformation of 
PSD sequential spectrum. For example, in Figure 1 we 
plotted such an analysis, obtained by simulation of a 
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continuous white noise signal with two transient stationary 
sinusoidal signals corresponding to 10 and 20 KHz 
superposed at three different time moments. The graph 
confirms the method of analysis based on spectral kurtosis 
as apt to distinguish the transient signals in physical 
systems. 
 

 

 
 

Fig. 1 Transient signals detected by dynamic spectral 
kurtosis 

 
 

Important applications of higher order statistics have 
been reported in the field of image analysis. In this area, 
kurtosis and skewness are used to analyze the shape of 
nanometric materials [11,12,13]. The present paper 
proposes an analysis referring to the use of kurtosis vs. 
skewness as size estimator and to predict the existence of 
single or multiple Weibull distribution, together with an 
experimental application of the method on some 
nanometric materials used as electrodes in fuel cell 
batteries.  

 
 
2. Skewness and kurtosis for different  
     distributions 
  
The most common distributions which affect the 

experimental data in physics are: 
 

1) The uniform distribution:  
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2) The Gaussian distribution:  
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3) The exponential distribution: 
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and particularly for size distribution in powders, 
 
4) The Weibull distribution: 
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and, related to it: 
 
5) The double Weibull distribution:  
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Skewness (Skew), kurtosis (Kurt), and kurtosis vs. 

skewness (Kurt-Skew) for the first three kinds of 
distributions are illustrated in Figure 2. The corresponding 
values were computed on subsets of the ordered set of 
initial values. The subsets are indicated in the graphs by 
their count. 

For the uniform distribution, both skewness and 
kurtosis present small variations, these variations 
consisting in statistical fluctuations due to the finite 
number of values in each subset, as seen on the Kurt-Skew 
diagram.  

For the case of the normal distribution a characteristic 
symmetrical U-shaped Kurt-Skew diagram is obtained.  

It has a left branch which decreases where the 
skewness is negative and a right branch which increases 
where the skewness is positive. Its minimum corresponds 
to the point of zero skewness and kurtosis. This is due to 
the fact that, the normal distribution has zero skewness and 
kurtosis and it is best represented by the middle subset. Its 
symmetrical shape also occurs for different values of the 
distribution’s parameters and thus it can be used to 
recognize the normal distribution. 

The exponential distribution gives a raising Kurt-
Skew diagram which is almost linear. Its increasing 
tendency seems to be a characteristic of many distributions 
with positive skewness. 
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Fig. 2 Uniform distribution on interval (left); normal distribution with parameters, 0=m , 1=σ   (center); exponential 
distribution with parameter 2=λ  (right) 

 

 
Fig. 3 Weibull distributions with parameters 5.1=r , 1=θ (left); 100=r , 1=θ (right) 
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Figure 3 shows the case of two Weibull distributions. 

The first one is positively skewed and has an increasing 
Kurt-Skew diagram, while the second is negatively 
skewed and its Kurt-Skew decreases.  

For both cases, the Kurt-Skew diagrams are almost 
linear. In the case of the second diagram, the Kurt-Skew 
diagram ends in a short “tail” to the lower end, towards 
zero on the skewness axis. The tail diverges from the 
linearity of the diagram and it is reminiscent of the right 
branch in the Kurt-Skew diagram of the normal 
distribution. 

An interesting case is the double Weibull distribution. 
This distribution is composed of two Weibull distributions 
placed at different positions with two maxima for well-
chosen parameter values. Its estimators are presented in 
Figure 4. 

The magnitude of the left Weibull compared to the 
right Weibull increases from left to right in the figure, 
while their positions are fixed. The right Weibull has 
parameter 4.32 =r  in order to approach a normal 
distribution, so the right Weibull has zero overall 
skewness and kurtosis. The left Weibull is positively 
skewed. 

The Kurt-Skew diagram is almost linear, especially in 
the last two cases (center and right) in the figure. It is 
decreasing in the first case, where the skewness is 
negative, and increasing in the last two cases, where the 
skewness is positive; this monotonicity seems to be 
independent of the sign of the kurtosis. In the first case, 
the Kurt-Skew diagram presents a short tail towards zero 
skewness. 

 

 
 

Fig. 4 Double Weibull distributions with parameters 5.11 =r , 4.32 =r , 121 == θθ , 7=c  and 

21== ba (left); 43=a , 41=b (center); 2019=a , 201=b (right) 

 
 

Fig. 5 shows the same graphs for double Weibull 
distributions having two Weibulls in different positions. 
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Fig. 5 Double Weibull distributions with parameters 5.11 =r , 4.32 =r , 121 == θθ ,  43=a , 41=b  and 

3=c  (left); 7=c  (center); 17=c  (right) 
 
 

 
The slope of the Kurt-Skew diagram increases from 

the left case (close maxima) to the right case (far away 
maxima). This is due mostly to the fact that the kurtosis of 
subsets varies less for far away maxima than it varies for 
close maxima, while the skewness of subsets has about the 
same variation in all three cases. 

The development of the tail in the lower end of the 
Kurt-Skew diagram is seen better in Figs. 6 and 7.  

The considered parameters are given in the figure’s 
caption. One can see that the tail appears below the main 
branch of the Kurt-Skew diagram and, as the importance 

of the left Weibull increases (i.e. a  increases), it rotates 
towards the main branch, passes over it and then goes 
down to acquire the same slope as the main branch, thus 
fusing with it.  

The tail doesn’t always appear towards zero skewness 
(see the right case in Fig. 6).  

The slope of the linear approximation of the Kurt-
Skew diagram (with the tail included) does not have  
precise monotonicity. 
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Fig. 6 Double Weibull distributions with parameters 471.11 =r , 4.32 =r , 515.479381 =θ , 12 =θ , 

477.426121=c  and 21== ba (left); 43=a , 41=b (right) 

 

 
Fig. 7 Double Weibull distributions with parameters 471.11 =r , 4.32 =r , 515.479381 =θ , 12 =θ , 

477.426121=c  and 109=a , 101=b (left); 2019=a , 201=b  (center); 10099=a , 1001=b (right) 
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3. Experimental estimations 
   
We applied the higher order statistical analysis based 

on kurtosis and skewness to study the volume distribution 
of a 10YSZ nanometric 10% stabilized zyrconia powder 
sample. The experimental values were obtained by image 
analysis, obtained by TEM with a microscope JEM-
200CX.  Fig. 8 gives the histogram of particle volumes. 
 
 

 
 
 

Fig. 8 The histogram of the particle volumes of the 
alumina-zyrkonia sample 

 
 

The particle volumes seem to have a Weibull 
distribution, moreover there seems to be a second lower 
maximum around 3000156 nm .  

By considering the Weibull distribution, the 
theoretical probability ( )vP  that particles have a volume 
V  higher than v  is: 
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where r  and 0v  are parameters which were determined 
by fitting this function to the experimental values. To 
confirm our supposition according to a Weibull 
distribution of the particle size, we computed the 
experimental probabilities as the relative number of the 
particle population with volume greater than a given 
volume: 
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where iv  is the thi −  volume in ascending order, 

tNi ,...,2,1= . The results are presented in Fig. 9 . 
 

 
 

Fig. 9 The fit of the experimental distribution probability 
with the theoretical Weibull distribution 

 
One feature makes a difference between the 

experimental and the theoretical values: the experimental 
probability iP  is smaller than the theoretical one for small 
volumes and it exceeds the theoretical one for bigger 
volumes; the dividing limit between the two trends is set at 
about 300050 nm . This means that more particles are 
concentrated at higher volumes. This is a real feature and 
not just noise and it is a consequence of the particle 
growth during the sol-gel process. 

 

 
a 
 

 
b 

Fig. 10 Indicators for the experimental values: the subset 
Skewness and Kurtosis graph (a); the Skew-Kurt 

diagram with linear fit (b) 

12

10

8 

6 

4 

2 

0 
1 2 3 4 5 6 7 8 

12

11

10

9 

8

7

6

5

4
2 2.2 2.4 2.6 2.8 3 3.2

K
ur

t 

Skew 

Skew 

Kurt 

(nm3) 

(nm3) 



Higher order statistics in signal processing and nanometric size analysis                                               3299 
 

 To test the probability that the second maximum is a 
real feature we used the double Weibull distribution with 
the theoretical graph illustrated in the middle of Figure 7. 
The comparison between theoretical and the experimental 
case given in Figure 10, reveals some differences. Firstly, 
the spectrum of values for kurtosis is different for the 
experimental and the theoretical case. Indeed, the average 
experimental kurtosis is 54.7 , while the theoretical 
kurtosis is about 67.3 . The skewness values are closer in 
the two cases, i.e. 2.63 experimentally and 87.1  
theoretically. These differences may be due to the 
roughness of the experimental selection, compared to the 
one used theoretically. Then, the Kurt-Skew diagram does 
have a very short tail, much shorter than the theoretical 
one because the tail is due to the second maximum. 
Further investigations reveal that the experimental linear 
approximation slope for the Kurt-Skew diagram is 612.5  
experimentally and just 2.586  theoretically. These 
considerations lead us to the conclusion that the 
experimental data may be affected by a lot of noise, thus 
the particle volume distribution is given only by the first 
Weibull.  
 
 

4. Conclusions 
  
Higher order statistics can be applied in the study of 

the particle size distribution in nanometric powder 
characterization. By using the graph of kurtosis vs 
skewness as size estimator it is possible to predict the 
existence of single or multiple Weibull distribution of 
particle size in a powder sample. This method is apt to 
improve the existing statistical methods. 
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